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The decompiler is one of the most common tools for examining executable binaries without the corresponding source code. It
transforms binaries into high-level code, reversing the compilation process. Unfortunately, decompiler output is far from
readable because the decompilation process is often incomplete. State-of-the-art techniques use machine learning to predict
missing information like variable names. While these approaches are often able to suggest good variable names in context,
no existing work examines how the selection of training data influences these machine learning models. We investigate
how data provenance and the quality of training data affect performance, and how well, if at all, trained models generalize
across software domains. We focus on the variable renaming problem using one such machine learning model, DIRE. We first
describe DIRE in detail and the accompanying technique used to generate training data from raw code. We also evaluate
DIRE’s overall performance without respect to data quality. Next, we show how training on more popular, possibly higher
quality code (measured using GITHUB stars) leads to a more generalizable model because popular code tends to have more
diverse variable names. Finally, we evaluate how well DIRE predicts domain-specific identifiers, propose a modification to
incorporate domain information, and show that it can predict identifiers in domain-specific scenarios 23% more frequently
than the original DIRE model.
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1 INTRODUCTION

Decompilers, i.e., tools such as Hex-Rays [22] and Ghidra [17], which help translate binaries into code that
resembles high-level languages such as C, are essential for software reverse engineers looking to predict the
behavior of malware [14, 56, 57], discover vulnerabilities [48, 52, 57], and patch bugs in legacy software [48, 52].
Decompilers use sophisticated program analysis and heuristics to reconstruct information about a program’s
variables, types, functions, and control flow structure, effectively increasing program comprehension for reverse
engineers who would otherwise work directly with binaries or with assembly code.

Still, the output of all existing decompilers is far from readable, as decompilation is often incomplete. Compilers
discard source-level information and lower its level of abstraction in the interest of binary size, execution time,
and even obfuscation. As a result, comments, variable names, user-defined types, and idiomatic structure are all
lost at compile time, and are typically unavailable in decompiler output. In particular, variable names, which
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are highly important for code comprehension and readability [16, 31], become nothing more than arbitrary
placeholders such as vAR1 and vAR2. While many compilers offer the option to include debugging information
that preserves variable names in the resulting executable, malware authors and commercial vendors typically
set compiler flags to prevent this in an effort to frustrate security researchers or protect corporate intellectual
property.

To improve on existing decompilers, researchers have been developing a suite of deep-learning based techniques
to automatically infer informative variable names (and in some cases also user-defined types) in a given context,
e.g., DIRE [30], DIRECT [39], and DIRTY [9]. Since programmers tend to write similar code in similar contexts [13,
23], such techniques can learn to infer natural names, even if not necessarily the original ones pre-compilation.
These techniques can be applied as a post-processing step to decompilation, taking the output of decompilers
as input and automatically refactoring it. While the specifics of the learning approaches vary, the key idea that
enables learning such models is that one can generate arbitrary amounts of parallel training data given access to
open-source software repositories and standard compilers and decompilers; these data consist of pairs of original
source, with presumably human-written variable names, and corresponding decompiler output, with placeholder
variable names.

However, while results from prior work [9, 30, 39] show that, on average, the performance of existing techniques
on decompiled open-source binaries is high, i.e., it is often possible to recover the exact variable names chosen by
the authors of that code pre compilation/decompilation, open questions remain about how the provenance and
quality of the training data affect performance, and how well, if at all, trained models generalize across software
domains. We argue that answers to these questions are direly needed. Indeed, data quality is a universal issue that
affects machine learning models in all domains. In addition, closer to our problem, researchers have already raised
concerns about neural models of code, e.g., that they are negatively affected by code duplication in the training
data [1, 33], do not scale well on code completion tasks because, of large vocabularies and out-of-vocabulary
issues [27], are not robust to semantic-preserving program transformations [42], and do not readily generalize to
other downstream tasks [26]. In essence, while much work, including the original ASE ’19 paper [30], has focused
on increasing the power of models of operations on code, here we focus on the orthogonal, underexplored issue
of better selecting and harnessing the data used to train these models to increase performance.

Specifically, in this paper we investigate how data quantity, quality, and software domain provenance affect the
performance of the neural identifier renaming technique DIRE [30]. Issues of data quality and model robustness
have, thus far, been underexplored by researchers interested in the decompiled identifier renaming problem. Our
work is an extension of an ASE 2019 paper [30] where DIRE was originally presented, the technical details of
which we reproduce verbatim here, for completeness. These include the technical description of DIRE and the
approach used to generate its parallel training data, plus a data-provenance-agnostic evaluation of DIRE, all
originally reported in the ASE 2019 paper [30]. In addition, relative to the conference paper, in this paper we make
two major new contributions. First, we study how the performance of DIRE varies when trained on decompiled
binaries from more versus less popular repositories (using GITHUB repository stars, the measure of popularity,
also as a loose proxy for code quality), and contribute empirical results showing that training on highly-starred
code leads to a more generalizable model because such code tends to be more diverse, i.e., it has a higher-entropy
distribution of variable names. Second, we evaluate how well DIRE learns to predict domain-specific identifiers,
propose a modification to incorporate domain information, and show empirically that the modified version can
predict identifiers in domain-specific scenarios 23% more frequently than the original DIRE model.

Note that contemporaneously with our current work, two competing decompiler identifier renaming techniques
have been proposed, DIRECT [39] and DIRTY [9]. The two use different learning approaches than DIRE (both use
a transformer-based architecture [54]) and report higher accuracy than DIRE when compared directly; however,
neither addresses the data provenance and model robustness research questions of interest here, although the
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Fig. 1. Overview of our paper.

approaches to train all three systems are fundamentally similar. Therefore, our current work (i.e., the new research
questions and experiments relative to the ASE 2019 paper [30]) can be seen as orthogonal.
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